

Leibniz Institute for Baltic Sea Research Warnemünde

Cruise Report

r/v "Professor Albrecht Penck"

Cruise- No. 07PE0809

This report is based on preliminary data

Institut für Ostseeforschung Warnemünde an der Universität Rostock Seestraße 15 D-18119 Rostock- Warnemünde GERMANY

+49-381-5197-0

+49-381-5197 440

1. Cruise No.: 07PE0809

2. **Dates of the cruise:** from March 5 to March 17 2009

3. Particulars of the research vessel:

Name: Professor Albrecht Penck

Nationality: Germany

Operating Authority: Baltic Sea Research Institute (BSRI) Warnemünde

4. Geographical area in which ship has operated:

Baltic Sea, more specifically the regions off Klaipeda and the Pomeranian Bay

5. Dates and names of ports of call

Saßnitz, Germany

6. Purpose of the cruise

Sampling of fresh water plumes that come out of the Curonian Lagoon from the Nemunas River and from the Oder Lagoon from the Oder River

7. Crew:

Name of master: Uwe Scholz

Number of crew: 10

8. Research staff:

Chief scientist: Maren Voß

Scientists: 5

Engineers: 1

Technicians:

9. Co-operating institutions:

Partner Institutes in the EU funded Amber project:

Coastal Research and Planning Institute, University of Kleipeda (CORPI), Lithuania; Prof. Dr. Jan-Marcin Weslawski, Institute of Oceanography Polish Academy of Science (IOPAS), Sopot, Poland.

10. Scientific equipment

CTD with oxygen and light sensor and water bottles

box corer

multi corer

11. General remarks and preliminary result (ca. 2 pages)

First station was in the Arkona Sea (ABBoje) for coring and IP (isotope pairing method for the determination of denitrification rates) method. Then we steamed to the investigation area in Lithuanian waters and after finishing our work there continued to the one in Polish waters (Figure 1).

On March 6 after sampling in the Arkona Sea we proceeded to Lithuanian waters to study the outflow from the Curonian Lagoon. Due to strong westerly winds of 9-10m s⁻¹ it took us until the evening of March 7 2009 to arrive there. First, we made a profile with the ships thermosalinograph from west to east for an overview of the outflow situation. The

next day we sampled along this profile with a CTD system and water bottles in 1 NM intervals and sampled 6 stations (Figure 2). We found a salinity gradient from 7.21 down to 2.92 at the station closest to Klaipeda harbour entrance which confirmed our assumption that the lagoon's outflow was strongest close to the outflow (Figure 3). Nutrients, oxygen and samples for dissolved organic nitrogen and carbon were taken. The next day (March 8) the transect was repeated for water samples. We found highest NO₃ concentrations at the third station from the Lagoon entrance with over 40µmol, while PO₄³⁻ stayed more or less uniform (Figure 4). The nutrient data from the one transect is representative for the other ones too. Furthermore we selected one station for coring (0013). But the sediment was very coarse and sandy and we had major problems to collect as much sediment as needed for IP method denitrification measurements. Finally, we decided to make a reduced programme and quit sediment samples. The southerly transect off Klaipeda was investigated with the thermosalinograph and then sampled the same way as the northerly transect. In 1 NM distances we selected again six stations for water column work. The transect work was repeated on March 9. Around noon we finished our work and took course to the south.

March 10 in the evening we arrived in German waters to take cores again for denitrification measurements with the IP method at station NS11 (table 1).

On March 11 we started with our work in the Oder Bight with thermosalinograph recordings along the notified transects. Based on that picture we designed a station grid (Table 1, Figure 5) which was visited three times. We sampled the grid at 18 selected stations on three consecutive days, March 12, 13, 14. We could not visit all stations at all the days due to heavy fishing activity and had to avoid most of the coastal near stations. We found varying salinities in surface waters although winds were low during these days (Figure 6). Nevertheless our data will provide an overview of surface water nutrient concentrations and dissolved and particulate material. Highest concentrations of nitrate were up to 70µmol close to the Swina Canal and decreased rapidly towards the north and east.

Since the sediments in the Pomeranian Bay were too coarse for sediment sampling we instead took cores from the German waters around the island of Rügen. A total of seven sediment stations were sampled in the AMBER cruise in 5-17.3.2009 with R/V Professor A. Penck. Six sampling stations were located in the Arkona area and one in Curonian Lagoon. (Table 2).

The purpose of the sampling was to measure denitrification/anammox rates and nitrification rates. Additionally sediment porewater nutrient profiles, sediment characteristics and nutrient fluxes were measured. The denitrification/ anammox rates were measured by using revised isotope pairing techniques (r-IPT). Nitrification was measured by using the ¹⁵NH₄⁺ oxidation method. The nutrient fluxes and the sediment characteristics were analyzed by using standardized methods.

The denitrification/anammox rates will help to estimate the nitrogen removal capacity of the sediments in these areas. As nitrification is providing the substrate for denitrification/anammox, the nitrification rate measurements will give insight to the parameters controlling nitrogen removal. Overall these measurements will help to understand the nitrogen dynamics of the Baltic Sea.

Due to strong winds a visit at the Arkona platform was cancelled and we returned a day earlier than originally planned. We arrived in Rostock harbour March 17 2009. We are very grateful for the uncomplicated communication and the generous support by the coastal authorities of Klaipeda and Swinoujscie.

Appendix:

Table 1 Stationlist and Positions in the Pomeranian Bay and off Klaipeda:

Name	lat (dec)	long (dec)
OBT1Sued	53,9385833	14,28895
OBT1Mitte	53,9754667	14,28265
OBT1Nord	53,9997667	14,27605
OBT1NordA	54,0327667	14,2660833
OBT3Nord	54,01615	14,3280833
OBT3Mitte	53,9904333	14,32695
OBT3Sued	53,9438333	14,3151333
OBT7Sued	53,9414	14,3932833
OBT8Sued	53,9461333	14,4239333
OBT8Mitt	54,0014	14,4664
OBT8Nord	54,0304167	14,3310667
OBT7Nord	54,0324333	14,4292167
OBT7Mitt	53,96965	14,4050167
OBT5Mitte	53,9639167	14,3634
OBT5Nord	55,3566667	14,3806333
KL_T1_O	54,00040	14,27490
X_0004	55,73542	21,02447
X_0005	55,73717	20,99520
X_0006	55,73817	20,96693
X_0007	55,73838	20,93813
KL_T1_W	55,73868	20,90928
KL_T2_O	55,73513	21,05630
X_0011	55,73573	21,02463
X_0012	55,73727	20,99535
X_0013	55,73725	20,96838
X_0014	55,73842	20,93777
KL_T2_W	55,73840	20,91037

Table 2: Station information for sediment cores.

		depth		Ion (deg)	O_2	Temp.	
#	date	m	lat (deg)	-	ml/l	С	salinity
1	5.3.2009	45	54'52,5760N	13'50,9010E	8	2.5	12.5
2	8.3.2009	35	55'44,3040N	20'54,6220E	8.8	2.5	7.5
3	10.3.2009	22	54'26,4750N	13'44,3210E	8.7	2.3	9.9
4	14.3.2009	7	54'11,3340N	13'44,6230E	9.2	2.7	7.3
5	15.3.2009	40	54'48.0580N	13'47.5720E	8.2	2.6	11.8
6	15.3.2009	23	54'36.4520N	13'38.0810E	9.1	2.5	8.6
7	16.3.2009	41.5	54'50.0250N	13'19.9690E	7.74	2.7	11.2

Figure 1 Overview of the Southern Baltic Sea with the rough location of the two investigation areas in Lithuanian and Polish waters marked with red squares.

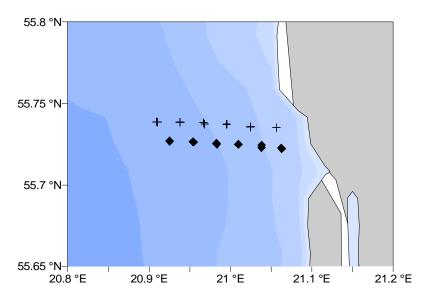


Figure 2 Station map of the Nemunas outflow. Crosses denote stations of transect 1 and diamonds denote stations of transect 2.

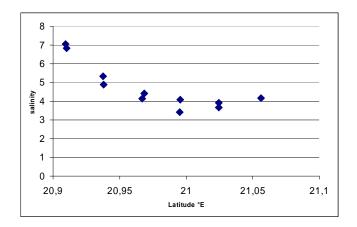


Figure 3 Salinity change along the transects off Klaipeda

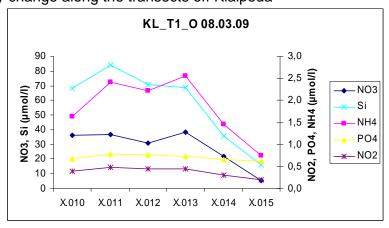


Figure 4 Nutrients along the first transect off Klaipeda at March 8. 2009. Left is the easternmost station right the westernmost station.

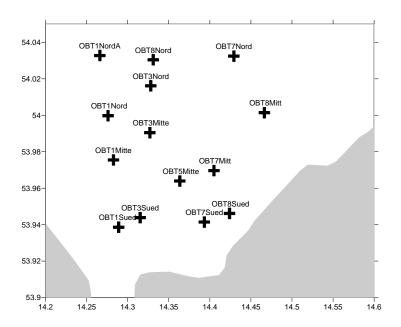


Figure 5 Station map and sampling location in the Pomeranian Bay

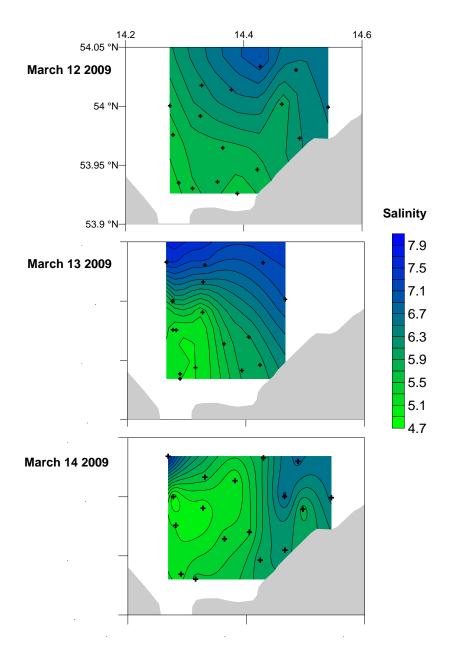


Figure 6 surface salinity isolines from the three rounds of sampling of three consecutive days. Although we had very calm weather the high dynamical motion of the outflowing plume can be seen.